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ABSTRACT 

A machine learning (ML) framework for space missions has been developed to creates situational awareness and 

enables anomaly detection, dynamic data filtering and sensor data quality assessments. The ML framework covers 

four areas; the ML architecture model, ML algorithms and formulism for satellite datasets, a scalable and extensible 

ML platform, and the ML application portfolio.  The ML architecture model defines how a ML system interacts with 

space and ground assets, ML functionalities, the interfaces among different ML processes, and the ML framework 

operational concept. ML algorithms and formulism includes data representation, data training, anomaly detection 

and characterization, and the creation of actionable information for mission/Enterprise situational awareness.  The 

ML platform is a software implementation of a ML architecture model that addresses the challenges of ML solutions 

in operational environments. The ML application portfolio focuses the applications of the ML framework to the 

health and safety of satellites and onboard instruments with differing orbital characteristics.  The Advanced 

Intelligent Monitoring System (AIMS) implements the ML platform to provide a common infrastructure and services, 

while ML algorithms are treated as plug-and-play components. The applications of the ML framework the 

Geostationary Environment Operational Satellite(GOES) instrument data, and the health and safety data for the 

Suomi National Polar-orbiting Partnership (NPP) are presented, and it shows that the ML framework bring 

fundamental advances in maintaining the health and safety of space missions. The ML approach enables early 

anomaly detection, rapid turnaround in anomaly troubleshooting, and significant improvement in system resiliency. 

1. INSTRODUCTION 

A satellite and its onboard instruments are dynamical systems with states that are time dependent and generally 

non-deterministic. The amount of data representing the states of the system (or its subsystems or components) 

could be large in number of datasets and volume (on the order of gigabytes or more per day for example) to make 

it impossible to perform manual analysis to determine the system operational state. The challenge is how to obtain 

actionable information from a highly complex system generating large volumes of data in near real-time. The focus 

of this paper is to present a ML framework that creates situational awareness enabling automated engineering 

analysis, resulting in fundamental advances in how the health and safety of a highly complex system with a large 

number of sensors are maintained. 

Situational awareness for a dynamical system is defined as the ability to perceive, analyze and predict its own 

behavior. Machine Learning provides a natural platform to create situational awareness by establishing data models 

through data training, to predict near-term behaviors.  The ability of a system to predict its own expected behavior 

enables anomaly detection, dynamic data filtering, and sensor quality assessment. The theory of situational 

awareness[1] also provides insights into how a ML system interacts with its managed systems, such as a space 

mission with both space and ground assets, which leads to the architectural model for a ML system. The ML 

architecture model defines the ML functionalities , interfaces among ML processes, and the operational concepts. 

There are considerable challenges in developing and executing ML algorithms in an operational environment 

due to the large number of datasets and large data volume required for processing (in near real-time). Furthermore, 

the data used in data training could be defective or anomalous that distort the training outcome. The data training 

process for a ML system in operational environments must be efficient while maintaining the accuracy of the data 

training outcome to prevent the distortion of training outcomes from defective data points. This requires flexibility 

in selecting data models and training algorithms to improve data training efficiency and a systematic approach to 

handling defective data points. Thus, an effective ML system for space missions must be scalable to handle large 

data volumes, flexible in selecting different ML algorithms for analyzing specific data patterns, and extensible to 
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address mission specific requirements. The ML platform is a software implementation of a ML architecture model 

that separates mission-specific and data pattern-specific logic from the logic common to all missions (within the 

aerospace domain). The algorithms specific to certain data patterns and the processes required to meet mission 

specific requirements are treated as plug-and-play components deployed within the ML platform. The ML 

application portfolios refer to the applications of the ML framework for specific missions, and each mission has its 

own data characteristics that may require different ML algorithms. The different orbital characteristics in space 

missions, such as Low Earth Orbit (LEO), Medium Earth Orbit (MEO) or Geosynchronous Earth Orbit (GEO), produce 

different data patterns.  The application of the ML framework has been applied to the GOES instrument data[2,7] 

and Polar satellite health and safety data with considerable success. 

This paper is organized as follows: Section 2 presents the ML architecture model for space missions; Section 3 

shows the general formulism in data training, anomaly detection and characterization, and post training analysis; 

Section 4 focuses on the ML platform implementation; Section 5 presents the applications of the ML framework 

developed for  GOES instrument data and the spacecraft housekeeping telemetry data for the NPP satellite; Section 

6 provides the summary and future outlook of ML applications for space missions. 

2. THE ML ARCHITECTURE MODEL FOR SPACE MISSIONS 

Figure 1 shows the ML architecture model. 

The managed element represents a dynamical 

system characterized by its state 

variables{𝑆𝑗(𝑡𝑖)}, which are time dependent. 

The datasets {𝑑𝑗(𝑡𝑖)} are the measurements of 

the state variables {𝑆𝑗(𝑡𝑖)}, which are noisy and 

follow the Gaussian probability distribution. 

The ML architecture model is based on the 

theory of situational awareness for dynamical 

systems[1] that defines how a ML system 

interacts with its managed element(s), and it is 

an information loop between a ML system and 

its managed element.  The datasets from a 

dynamical system are monitored, analyzed, and 

appropriate actions are taken to change/enhance system behavior ensuring that system performance meets mission 

objectives. Situational awareness of the managed element is achieved through data training on existing data and 

establishes data models to predict near-term system behaviors, and enables dynamical monitoring for anomaly 

detection, dynamic data filtering, and data quality assessment.  

The data models are trained with “normal” data, where “normal” data refers to data that was assessed for 

quality, containing few or no errors/anomalies. Since datasets with Gaussian probability distribution form a tight 

data bound, these data sets are highly sensitive to deviations from their expected behavior above the calculated 

noise level. The dynamic monitoring function compares the values of datasets with predictions of their data models. 

An anomaly in a dataset is defined as the unexpected change from its normal data pattern, which can be detected 

through either dynamic data monitoring in real or near real-time and or a post training analysis process.  

Data training outputs allow dynamic data filtering to determine the actual values of state variables {𝑆𝑗(𝑡𝑖)} by 

combining values of incoming datasets with predictions of ML data models. The Kalman filter is a dynamic filter 

widely used in space missions for determining spacecraft orbit characteristics, where the spacecraft orbit is predicted 

by classical orbital mechanics. The application of a Kalman filter with ML algorithms to predict the expected behavior 

of state variables has not been fully investigated. Additionally,  a potential application of the dynamic filter is in 

Figure 1 The Architecture Model of the ML System 
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instrument data calibrations, where the calibration coefficients are derived from the observations in spacelooks and 

internal targets that are generally noisy. The ML algorithms can be used to predict its near future behavior.  

The post training analysis process is performed after data training in each session to obtain actionable 

information from a large amount of data training outputs which include data quality and system operation status. 

Furthermore, long-term trending can also be performed in the post training analysis process to investigate system 

degradations and make predictions on when a system is expected to fail. Clustering techniques are generally 

implemented in post-training analysis, and these techniques are performed with data quality metrics as its 

attributes.  

The operations concept for a ML system 

is shown in Figure 2. A training session 

generally covers a period long enough so that 

input training sets contain sufficient 

information for predictions of near-term 

behaviors. Training sessions are repeated 

periodically, which enables data models to 

adapt to long term or seasonal pattern 

changes. Since daily changes in data patterns 

are small, the retraining of datasets is a minor 

adjustment of the training output from previous training sessions. Data training for current sessions uses the output 

from previous training sessions as the input. This is particularly important for data training of nonlinear data models, 

such as neural networks; data retraining on existing data models makes the training algorithm much more efficient 

and enables data training for operational environments (near real-time processing). The overlaps between two 

consecutive training sessions ensures the stability of training outcomes. There are three processes running 

consecutively in each training session: data training, post training analysis, and report generation. The report 

generation process provides reports on data training output and post training results, and the content and format 

of data training results are generally mission specific.  The real or near real time monitoring of data sets is performed 

continuously, and the data models used in the monitoring process are updated periodically by data training output.   

3. ML ALGORITHMS AND FORMULISM 

A dataset {𝑑𝑗(𝑡)} corresponding to the state variable {𝑆𝑗(𝑡𝑖)} is characterized by its time dependent trend 

{𝑠𝑗 , 𝜎𝑗}, which consists of a time dependent function 𝑠𝑗  

𝑠𝑗 = 𝑓𝑗(𝑡 − 𝑡0)                                                                               (1) 

representing the actual state value at time t, and a standard deviation 

𝜎𝑗 = √1

𝑁
∑ (𝑑𝑗(𝑡) − 𝑆𝑗(𝑡𝑖 − 𝑡0))

2

𝑖                                                                        (2) 

for the noise level. The noise level  𝜎𝑗 represents the data quality of a dataset 𝑑𝑗(𝑡) that provides important insights 

into its data quality and operational status. The time dependent trend {𝑓𝑗(𝑡 − 𝑡0), 𝜎𝑗} is obtained in ML framework 

by training the time dependent function 𝑓𝑗(𝑡 − 𝑡0) with the dataset 𝑑𝑗(𝑡). Data training for the datasets with 

Gaussian probability distribution follows the least square fitting routine with respect to the parameter set 𝑾: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑊

∑
1

2
(𝐷𝑗(𝑡𝑖) − 𝐹𝑗(𝑡𝑖 − 𝑡0, {𝑆𝑘}, 𝑊))

2

𝑖                                                    (3) 

where 𝐷𝑗(𝑡) and 𝐹𝑗(𝑡 − 𝑡0, {𝑆𝑘}, 𝑊) are the corresponding training set for datasets 𝑑𝑗(𝑡) and the data model for the 

time dependent function 𝑓𝑗(𝑡) in the data training space. A transformation between  𝐷𝑗(𝑡)/𝐹𝑗(𝑡 − 𝑡0, {𝑆𝑘}, 𝑊)  and 

𝑑𝑗(𝑡)/𝑓𝑗(𝑡) is generally needed for data models within the ML framework and with actual datasets with arbitrary 

scales. The data training function finds a parameter set W so that the error function, Eq. 3, is minimized. This type 

of problem is generally referred to as a regression problem in ML.   

Figure 2 Data Training Operational Concepts 
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There are many data models in the ML 

framework for time dependent trends, which can 

generally be categorized in two groups: linear and 

nonlinear data models. Data training for linear 

models is generally much more efficient than data 

training for nonlinear models, while the nonlinear 

models, such as for neural networks, generates 

more accurate training outcomes especially for a 

dataset with a high noise level. The implemented 

data models include the Fourier expansion 

model[2] and neural networks[3,4,5]. The Fourier 

expansion data model is a linear model, where the 

time dependent function 𝐹𝑗(𝑡 − 𝑡0, 𝑊) has a 

linear relationship with the parameter set 𝑾. A 

data training algorithm for the linear model is the 

linear least square fit algorithm. The Fourier 

expansion model is limited to data patterns with 

dominant low frequency components. Neural 

network models are nonlinear models, and data 

training algorithms are generally based on the gradient decent approach. The local adaptive gradient decent 

algorithm[6] is implemented for neural networks, which provide significant improvements in accuracy as well as 

efficiency over the standard gradient decent approach within training outcomes. The universal approximation 

theorem shows that the neural networks model generally provides a good description for all data patterns including 

the non-continuous ones, however, the data training algorithm for neural networks is always less efficient than that 

for linear data models.  Therefore, the linear model is generally preferred for data patterns with dominant low 

frequency components to improve data training efficiency. Multiple data models, including both linear and nonlinear 

models, are implemented for datasets within the same system to ensure data training efficiency and accuracy. More 

detailed discussions of data training for the Fourier expansion model and neural networks are provided in Ref. [5]. 

The time dependent trend for a dataset with a Gaussian probability distribution defines a data bound with values 

that satisfy the following relationship: 

|𝑓𝑗(𝑡𝑖 − 𝑡0) − 𝑑𝑗(𝑡𝑖)| < 𝑁𝜎𝑗                                                                     (4) 

where N is a user defined threshold parameter. There are generally two threshold parameters, 𝑁𝑊 and 𝑁𝐸.  

These parameters are defined for warning and error assessments respectively, which correspond to the red and 

yellow limits in an existing telemetry data monitoring application/system. Figure 4 highlights the difference in data 

monitoring between the static limit monitoring approach and the dynamic monitoring in the ML approach. The 

narrow data bound determined by the time dependent trend is much more sensitive to deviations above data noise 

levels. Thus, deviations from the existing data pattern in a dataset can be detected much earlier in a ML framework 

than from static limit monitoring. Some deviations in data patterns may still be measured within the defined static 

limits, however these data points cannot be detected by a typical limit monitoring function. 

A data point with a value outside the data bound defined in Eq. 4 is regarded as an outlier. While an isolated 

outlier does not impact the data quality, consecutive outliers may indicate a persistent data pattern change due to 

a potential anomaly. An anomaly in a dataset corresponds to the data pattern change in ML framework, which is 

represented by the persistent consecutive outliers in a dataset. An outlier for a dataset is quantitatively defined as[7] 

𝑂 (𝑑𝑗(𝑡𝑖)) = 𝑁 (
𝑓𝑗(𝑡𝑖)−𝑑𝑗(𝑡𝑖)

𝜎𝑗
> 𝑁)                                                            (5)                                 

Figure 3 The top plot shows the data monitoring with the 

static limit and the bottom plot represents the dynamic 

monitoring based on the ML outputs. The red lines in the 

bottom plot are the data bound defined by Eq. 4. 



34th Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America 
Presented on April 16, 2018 

 

  Page 5 of 8 

where the quantity (
𝑓𝑗(𝑡𝑖)−𝑑𝑗(𝑡𝑖)

𝜎𝑗
> 𝑁) is a Boolean variable, and N is a threshold value for an outlier. These 

persistent outliers form an outlier cluster along the time axis corresponding to the data pattern change. The metric 

that measures the data pattern change is defined as: 

𝜒𝑗
𝑂 = ∑ (

𝛿𝑖
𝑊

𝑇
) +

𝑁𝐸

𝑁𝑊
∑ (

𝛿𝑖
𝐸

𝑇
)𝑖𝑖                                                                            (6) 

where 𝛿𝑖
𝑊 and 𝛿𝑖

𝐸 are the period for the warning and error outliers respectively, and 𝑁𝑊 and 𝑁𝐸 are the warning 

and error threshold parameters. The parameter 𝑇 in Eq. 6 represents the time scale of persistent outliers determined 

by the sampling frequency of datasets. The metric 𝜒𝑗
𝑂 depends on the period of the consecutive outliers, and the 

quantity 
𝑁𝐸

𝑁𝑊 > 1 represents the outlier severity. The 𝜒𝑗
𝑂  value has the range 0 ≤ 𝜒𝑗

𝑂 < ∞, and  𝜒𝑗
𝑂 = 0 for the 

datasets with an isolated outlier with a period of zero. A dataset with a normal operational status should have zero 

or a small 𝜒𝑗
𝑂value. The  metric 𝜒𝑗

𝑂is used in both real-time data monitoring and post-training analysis for anomaly 

detection and data quality assessment.  

There are two additional metrics[7], temporal and spatial changes, used in the post training analysis in addition 

to the pattern change metric in Eq. 6, which measures data quality based on data training outputs.  The temporal 

change metric measures changes in standard deviation 𝝈𝒋 of a dataset between two consecutive training sessions. 

The spatial change represents the relative quality of a dataset by comparing its standard deviation 𝝈𝒋with those that 

have the same scale and similar data patterns. The spatial change metric is very useful for sensors within the same 

spectral channels for sensor quality evaluations. More detailed discussions of these metrics are presented in Ref. 

[7]. 

4. A FLEXIBLE, SCALABLE AND EXTENSIBLE ML PLATFORM 

A ML system in an operational environment has considerable challenges, which include: large numbers of 

datasets, very large data volumes, diverse data types, and defective datasets with outliers that affect data training 

outcomes. Data training algorithms in operational environments must be very efficient while maintaining the 

accuracy of data training outcomes. Flexibility in selecting different data models for datasets with different data 

patterns is critical. Furthermore, the application of a ML framework to different domains requires different post 

training algorithms. A scalable, extensible and flexible architecture for a ML system in space missions is essential. 

The enterprise architecture for ML systems separates the common logic from the mission-specific and data pattern-

specific logic. The ML platform provides common software services and infrastructure, while mission specific and 

data pattern specific logic are implemented as plug-and-play components. The ML platform also provides processing 

management to allocate sufficient computing resources for ML processes that are very computationally intensive.  

A well-designed ML framework allows engineers to focus on ML algorithms specific to the domain datasets, 

eliminating or reducing the need to expend resources for logistics and infrastructure functions that are required for 

setting up complex ML applications.  A well-designed and robust ML platform will significantly reduce the 

development cycle, risk, and cost of a ML application. Figure 4 shows the ML enterprise architecture based on the 

ML architecture model with component (top), function, service, and infrastructure (bottom) layers, which provides 

well-defined functions, interfaces, and a simple and structured operational concept.  

The ML architecture model in Figure 1 provides well-defined input/output content for each component, which 

ensures that a standard API can be defined. The service, function, and infrastructure layers in the enterprise 

architecture provide the common logic for all machine learning applications, while the component layer provides 

the flexibility to select the algorithm component for specific data patterns, and the extensibility to meet the mission 

specific requirements. The data input components provide the flexibility to access data in different formats from 

raw telemetry data and instrument calibration data. The post-training analysis functions implement clustering 

techniques within the data quality metrics space. The domain specific algorithms for long term trending or predictive 

maintenance can also be implemented in the post training analysis processes. Different missions or domains may 
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have different requirements for the implementation of data quality metrics and clustering techniques. Report 

generation components ensure the needed flexibility to meet specific and/or unique requirements in content and 

format. 

The common ML services include: 

• Class registry service links the component names with the actual class object that can be invoked by the 
processes in the function layer. Each component is registered in the class registry, and each datasets defined in 
the application database have attributes that identify which component is being used in ML processes. 

• Database provides data definitions and attributes needed for data training including the component names for 
algorithm and post training analysis. 

• Configuration service provides overall 
global configurations such as the data 
path for the data archive locations, and 
mission specific configurations can be 
defined and accessed by each 
component via the configuration 
service. 

• Event message service provides 
consolidated event message handling, 
which can be accessed by components 
to publish event messages within the 
framework. 
 
The common infrastructure provided by the ML platform includes 

• The archive provides permanent storage for data training output. Data models used in ML are represented by a 
set of parameters so that data models can be archived and reconstructed.  

• The client service provides the capability to show data training results, data monitoring status, and post-training 
analysis results in various formats, such as data plots, timeline bar chart, and html files. A common GUI interface 
is also provided for manual data training, critical for a ML system during deployment. 

• Ground system interface enables a ML system to publish event messages to a common message bus within the 
ground system enterprise and to provide ML services to other applications allowing the existing ground system 
to leverage capabilities of the ML application and framework. Examples of ground system enterprise 
standards/capabilities include the Goddard Mission Services Evolution Center (GMSEC) reference 
architecture[8] and the future US Air Force Enterprise Ground Services (EGS) standard. 
The enterprise architecture in Figure 4 has been implemented in AIMS[5,7].  The APIs for the components in 

Figure 4 have been defined and implemented in AIMS, and the component deployment procedure has been 

developed.  

5. ML FRAMEWORK APPLICATION PORTFOLIO 

The initial application of the AIMS ML approach focused on instrument datasets from the GOES spacecraft. AIMS 

is deployed for monitoring the instrument calibration performance of the Advanced Baseline Imager (ABI)  on GOES-

R.  The ABI instrument has 6 visible and 10 infrared (IR) channels with 7000 active detectors. There are multiple 

variables or data points defined for each detector used in instrument calibration, which leads to more than 30,000 

datasets to be trained and monitored daily by AIMS. Figure 5 shows an example of anomaly detection by AIMS. The 

dataset shown in Figure 5 is the detector internal calibration target (ICT) counts of an infrared channel, which is used 

as the input for instrument data calibrations. Anomalies in this dataset will directly impact instrument data quality.  

The two red lines in the plot are the upper and lower data bounds based on Eq. 4. The detector became anomalous 

around 10:00Z on 364 in 2017, where the values become flat. This represents a detector that is no longer responsive 

to temperature changes in the remote sensing area of the globe that is being measured, which leads to a stripping 

phenomenon of ABI-captured images. This anomaly can be detected in real-time or near real-time depending on 

Figure 4 The ML Enterprise Architecture with component (top), 

functional, service, and infrastructure (bottom) layers. 
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instrument data latency. The sensor data pattern change (from nominal) would not be detected through static limit 

monitoring, since these data values within the anomalous period are still within the static limits. The anomaly is also 

detected through post training analysis since 

the changes within the data pattern 

generates highly elevated values in both 

spatial and temporal change metrics.  

It may take hours or days to find the root 

cause of an anomaly using a typical 

engineering analysis (human and non-ML 

computing capabilities), while it takes only 

minutes or less for AIMS to find and 

determine which sensor failed.   

The application of an ML framework and 

applications such as AIMS on polar orbiting 

satellites, sand low Earth orbit (LEO) satellites 

is ongoing. Figure 6 shows the AIMS data training output for the NOAA Suomi NPP power system, which is a LEO 

satellite with very different orbit characteristics compared to GEO missions (such as GOES-R). All three datasets are 

implemented with the same simple neural network with two hidden layers. The data training output (blue line) 

shows remarkable accuracy with the actual data 

points (red dots). The key difference in the daily 

data training operation between the datasets for 

GEO and LEO satellites is the reference time 𝒕𝟎 in 

the time dependent function 𝒔𝒋 = 𝒇𝒋(𝒕 − 𝒕𝟎). The 

reference time 𝒕𝟎 must correspond to the same 

point in a given data pattern. The GEO satellite 

datasets generally show a diurnal pattern so that 

the reference time can be set at the start of day, 

while LEO satellite datasets, such as the NPP 

dataset, show a repeatable pattern in one satellite 

orbit period, which is around 1.7 hours. The time 

for the equator crossing point is generally selected 

as the reference time for LEO satellites, which can 

be obtained generally from the spacecraft 

ephemeris telemetry or the two-line element 

propagation calculation.  

The temporal change and outlier cluster 

metrics[7] can be used for data quality evaluation 

and anomaly detection in the post training 

analysis for telemetry data. In addition to data 

quality metrics, the domain specific knowledge is 

generally needed to evaluate the operational 

status (nominal or anomalous) of a given 

subsystem, such as the power or navigation systems. The ML framework and application for analyzing and 

monitoring LEO satellites  spacecraft health and safety is in progress. 

6. SUMMARY AND OUTLOOK 

Figure 6 Data training output for datasets in NPP power 

system. The red dots are the telemetry data, and the blue lines 

are the data training output. The datasets are the pressure 

(top), voltage (middle), and the current (bottom). 

Figure 5 The ICT Counts for the detector 291 in ABI channel 12. 

The purple points are the actual data values, and the blue line is 

the prediction from the data model. The two red lines are the 

upper and lower data bound defined in Eq. 4 
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A robust and flexible ML framework brings fundamental advances in system resilience and maintaining the 

health and safety of spacecraft and its onboard instruments; datasets are monitored via data pattern changes rather 

than static limit violations. Data quality metrics provide quantitative measurements of data pattern changes, and 

they become actionable information in anomaly detection, data quality assessments, and system operational status 

evaluations. The ML architecture model based on the theory of the situational awareness for dynamic systems 

provides well-defined functions/capabilities, operations concepts, and interfaces between ML processing blocks. 

The scalable, extensible and flexible ML enterprise architecture allows engineers to focus on the development of 

algorithm components for specific applications, which significantly reduces ML application development cost and 

schedule. A robust and flexible ML framework with a well-documented and functioning API, plug-and-play algorithm 

platform (ML platform as a service) and deployment approach  can be evolved into an industry standard for ML 

applications. 

The ML framework presented here can be extended to missions that contain a very large number of sensors 

with complex operations and large data volumes. Flight operators, with typical software tools, would find it 

impossible to retrieve actionable information from these datasets because of their very large data volume with 

today’s telemetry assessment tools (e.g. trending and analysis and custom tools). 

Our initial experience from deploying AIMS for NOAA/GOES-R radiometric operations shows that an ML 

approach significantly improves system resiliency; it enables early anomaly detection, much more rapid turnaround 

in troubleshooting and sensor quality assessment, which is not possible, or  more time-consuming, using a traditional 

engineering analysis approach.  AIMS is a low risk and low-cost ML solution that provides considerable benefits to 

current and future space missions. 
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