
32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

Copyright © 2016 by Millennium Engineering and Integration Co. All rights reserved. Page 1 of 23

SIMULATION-CENTRIC MODEL-BASED DEVELOPMENT FOR
SPACECRAFT AND SMALL LAUNCH VEHICLES

Mike Briggs

MEI, mbriggs@meicompany.com

Nathaniel Benz
MEI, nbenz@meicompany.com

Douglas Forman

MEI, dforman@meicompany.com

ABSTRACT
The purpose of this paper is to characterize a form of Model-Based Systems Engineering (MBSE, (also known as

Model-Based Development , or MBD)) as an integrated End-To-End (ETE) dynamic simulation-driven and code-
generation-based process that facilitates and accelerates design and specification of complex systems. Inasmuch as
a “scientific model” can be defined in a general way as a “physical or mathematical representation of a real
phenomenon or object that captures its internal and external functions and behaviors to the extent and fidelity
desired for the model use case”, a suitable general definition of MBD is “composition and use of a scientific model
to specify designs for and assess behavior and performance of a complex system of subsystems”. These definitions
provide a framework for accomplishing MBSE as we know it today.

In this paper, we primarily address applying MBSE to support development of complex systems that are
composed of (1) sensors to measure system states, (2) actuators to apply forces or torques to the system or its
components in response to commands, (3) data processors with embedded software to estimate states from sensor
outputs and generate actuator commands, (4) system external inputs and operating environments, and (5) system
outputs/products or payloads. Although these five entities are sufficiently general to represent a wide variety of
complex systems, we choose to emphasize Spacecraft and Space Launch Vehicles as good examples of such systems
within this paper to illustrate a modest functionality and complexity subset of the much larger spectrum that can be
addressed using MBSE. The examples shown herein exploit visual charts and executable block-diagrams provided by
commercial design-automation products to represent physical attributes and dynamics of physical systems
comprised of hardware and software functions, the flow of logic/control and data and automated generation of
source code from specifications provided by the block diagrams and information flow.

This paper will address MBSE in the following approach. The Introduction discusses the motivation for applying
Model Based Systems Engineering and provides some insight into the variety of methods and tools that have been
promoted for application to MBSE. Section 2 discusses processes applicable to MBSE and history of its development.
Section 3 describes design-automation tools chains for small and large projects, and Section 4 discusses techniques
for block-diagram programming of hardware and software models. Automated Code Generation (Section 5)
addresses automated code generation and compilation targeted to operating systems or middleware, and is
followed in Section 6 by a discussion of verifying and validating simulation models for prediction of system
performance and generating standards-compliant robust and error-free code for embedded systems. The paper
concludes with descriptions in Deployment and Operation of how the same system simulation created across the
development phase is modified to support operational deployment.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 2 of 23

INTRODUCTION

The motivation for adopting ETE MBSE is to provide substantial improvements in the quality of complex products

while reducing the time and expense required to develop, deploy and support them. The paper provides insights
into those metrics in the context of low-cost navigation, guidance and control avionics for spacecraft and small
launch vehicles. Clearly, the effectiveness of this process is dominated by the fidelity of the underlying dynamic
system models, so the paper provides examples of detailed subsystem modeling and simulation including effects of
uncertainties and sensor measurement errors, and addresses real-time simulation issues associated with system
verification and validation.

Although a variety of methodologies have been characterized as desirable MBD processes, including “Model-
Based Systems Engineering”, “Model-Based Development”, “Model-Based Software Development”, and other
additional descriptors that invoke the term “Simulation-Driven” in place of “Model-Based” terminology, many of
these address only part of the problem, such as focusing strictly upon software development.1 2 3 or only the left
(definition) side of the V-chart (e.g. Figure 1). Other methods that claim MBD capability describe behavior using
software tools that automate Specification and Description Language (SDL) diagrams such UML and SysML4 5.
Although SDL diagrams can be effective in documenting and communicating proposed functionality descriptors,
architectures and dataflow across diverse teams, the fact that they are currently incapable of simulating behavior
makes them an incomplete solution that must be augmented through integration with simulation-centric, design-
automation tools such as Simulink. This provides means of performing dynamic simulations of integrated system
hardware and software to support iterative design-and-test as well as simulation-based verification and validation,
and illustrates some of the need for an integrated chain of design automation tools as will be discussed in Section 2
(Model-Based Systems Engineering) of this paper.

MODEL-BASED SYSTEMS ENGINEERING

Systems Engineering is an interdisciplinary approach and a means to enable successful development of

“systems”, which are recognized as being composed of interdependent, interacting elements that act in concert to
satisfy user needs and requirements. Systems Engineering is then recognized as an end-to-end scheme for organizing
and controlling the application of engineering techniques to the engineering of complete systems in a manner that
recognizes the interdependence and interactive nature of a system’s elements throughout the life cycles of systems.
Systems Engineering also integrates all the necessary disciplines and specialties needed to develop a specific system
into a team effort, forming a structured development process that, in principle, proceeds seamlessly from concept
to production to operation and disposal, actual experience notwithstanding.

Figure 1 shows the ubiquitous “V-diagram” provided in the form shown in Chapter 4 of the Defense Acquisition
Guidebook6 to illustrate the systems engineering process at the top level, representing top-down requirements
definition and analysis, design and specification followed by bottom-up implementation, verification, validation,
deployment and operational support. From this diagram, it is clear that Systems Engineering encompasses a lot more
than requirements analysis, decomposition and flowdown and is, in fact, an End-To-End (ETE) process that also
guides the physical realization and deployment of systems. The definition of Model-Based Systems Engineering
presented earlier (composition and use of a scientific model to specify designs for and assess behavior and
performance of a complex system of subsystems) clearly encompasses the ETE requirement for systems engineering.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 3 of 23

Figure 1: The End-To-End Systems Engineering Process as Represented in Chapter 4 of the Defense Acquisition

Guide

As a result, the term Model-Based Development (MBD) is therefore synonymous with Model-Based Systems

Engineering (MBSE), and can be defined as: “Composition and use of a scientific model to specify designs for and
assess behavior and performance of a complex system of subsystems”. As a result, the abbreviations “MBD” and
“MBSE” are used interchangeably in this paper. The ETE MBD approach emphasizes simulation-driven functional and
performance testing and verification at every step in the “V-diagram”, as per the following activities that parallel
those shown in Figure 1:

1. Requirements Analysis & Flowdown:, Emphasize cognitive identification of functions as candidates for
satisfying requirements, modeling and dynamic simulation of requirements-compliant functions and
function parameters, and allocation of the functions and requirements to subsystem models so as to
constitute, test and identify viable architectures;

2. Analysis of Alternatives: Model dynamic simulation and performance assessment of subsystem
alternatives to support and verify trade studies;

3. Subsystem Requirements Specification: Extraction of subsystem models and parameters from the
simulation to prepare subsystem requirements specifications that support their procurement or
manufacturing, with maintenance of the simulation as a life-cycle source of subsystem functional and
performance specifications;

4. Subsystem Model Verification: Reconciliation of simulation model outputs with subsystem test data to
facilitate constructive simulation validation;

5. FMEA/FMECA, Risk Assessment and Mission Assurance: Simulate failure modes and effects to define risks,
evaluate potential risk mitigations and provide simulated data to support Mission Assurance activities;

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 4 of 23

6. Embedded Software Generation: Automate generation of source code for embedded software from the
simulation targeting compiler/operating system/processor combinations or middleware, with seamless
compilation linking and download to test targets;

7. Test Driver & System Test Case Generation: Auto-generate real-time plant-model code to provide
simulation-drivers for Processor-In-Loop and Hardware-In-Loop tests of systems. Perform dynamic
simulation of ground and flight tests to support test planning and provide a basis for comparison of achieved
vs. expected test results with reconciliation of the simulation models to test data;

8. Verification & Validation (V&V) Using Formal Methods: Automate support of verification and validation
by processing the simulation models and generated code through software-based theorem provers, model
checkers, static code analysis & standards compliance analysis tools;

9. Operational Training and Command Verification: Integrate the system simulation with operations-
compliant user interfaces to provide means of training operators and also provide means of testing and
verifying safety and effectiveness of operator commands before they are applied to the actual system; and

10. Operational Anomaly Resolution: Use the system simulation to perform system anomaly assessment,
including fault identification, isolation and duplication via simulation, and dynamic simulation-based testing
and verification of fault accommodation actions. This activity also applies to simulation-directed
preventative maintenance.

Figure 2 illustrates integration of several of these ETE dynamic simulation, model-based activities into the V-
chart workflow, wherein the iterative nature of interactions between modeling/simulation and feedback of changes
derived from assessment results is depicted.

Figure 2: Representing Model-Based Development Within the ETE Systems Engineering V-chart

Software
Configuration

Items

Hardware
Configuration

Items

Ground & Flight
Tests

RISK MANAGEMENT

Mitigation Results
Risk Register &

Burn-Down Plans

Sim-Driven Requirements Verification & Traceability Matrix, Verification
StrategySim-derived

Requirements
Criticality & Design

Risks

Test
Results

Design
Descriptions
& Test SW &

Cases

Design /
Implementation
Information in

Models

M&S Descriptions
and V&V Results

OPERATIONS
ACCEPTANCE

Intended Uses
& Criteria

V&V
Reports

User Feedback

Hardware-
In-The-
Loop

Open Architecture M&S Framework/ Common Models

SIMULINK
Models &

Code Generation

External System M&S

Joint M&S Plans Federated Sims

MDB
Core
Tools

Auto-Generated
Software

Model-
Represented

Architecture &
Design

Requirements
and Baselines

V&V Reports based upon sim & test results

Iterative
Decomposition &

Synthesis

Master
Test
Plan

V&V Derived Test
Requirements

REQUIREMENTS,
ARCHITECTURE &

DESIGN

IMPLEMENTATION &
INTEGRATION

STAKEHOLDER
NEEDS &

CONSTRAINTS

VERIFICATION &
VALIDATION

Simulation-based
Capability

Assessments

Plan

Define

System
Design

Field

Assess

Test &
Verify

Subsystem
Design & Build

Warfighter
Feedback

V&V Derived M&S
Requirements and
Problem Reports

Test
Items

Test-By-Test Prediction &
Reconciliation

FMECA

FMECA

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 5 of 23

The “Iterative Decomposition and Synthesis” feedback loop depicted on the left-hand side of Figure 2 is shown
in more detail in Figure 3, which also shows how dynamic simulation is applied to accomplish the four basic tasks
shown.

Figure 3: Simulation-Driven Iterative Decomposition and Synthesis7

History of Model Based Development
Model-Based Systems Engineering (MBSE) has evolved as term used in the Systems Engineering lexicon over the

past 20 years or so to be descriptive of a transition from “Document Centric Systems Engineering” (the old way) to
“Model Centric Systems Engineering”8. The ideas behind system science and engineering and the role of “Models”
has been around since 1925, but the effort required to develop computer-based system models, the advent of
government procurement of complex systems and the need for design traceability and understanding of it by diverse
users shifted the focus to “document-centric systems engineering” from the 1960’s to the mid-1990’s.

This document-centric process began to evolve in the 1960s, but prior to that systems theory was built upon
modeling and simulation. For example, a “General Systems Theory” was presented by biologist Ludwig von
Bertalanffy in lectures as early as 1937, publications beginning in 1946 and ultimately a 1968 book9, wherein von
Bertalanffy maintains that a system is characterized by the interactions of its components and the nonlinearity of
those interactions rather than the sum of actions of a system’s components, and “integrating Philosophy and Theory
as Knowledge, and Method and Application as action, Systems Inquiry then is knowledgeable action” that can be
represented by a theory or Model. In a 1956 issue of “Management Science”10, K.E. Boulding begins by stating
“General Systems Theory is a name which has come into use to describe a level of theoretical model-building which
lies somewhere between the highly generalized constructions of pure mathematics and the specific theories of the
specialized disciplines”, clearly establishing models as the driving 1950’s thought regarding General Systems Theory
clearly emphasized models as the driving force behind systems engineering in the 1950’s.

Decades later, when block-diagram programming and Universal Modeling Language (UML) automation tools
matured in performance, reliability and acceptance in the late 1990’s/early 2000’s, the availability of these tools on
desktops and laptops (rather than limited-access mainframes) and their demonstrated ability to increase software
reliability, communication of design intent and reduce development and operation cost led to a resurgence of
models and dynamic simulations as the foundation of Systems Engineering, now known as Model Based Systems
Engineering (MBSE).

Requirements
Analysis

System Analysis
And Control

(Balance)
Requirements
Iteration Loop

Design Iteration
Loop

Design Synthesis

Functional Analysis
And Allocation to

Notional Subsystems

• Model interacting functions
• Simulate performance of interacting

functions, evaluate metrics
• Assess metrics compliance with

Requirements & function feasibility
• (Adjust/rebalance requirements)

• Allocate/group Functions into candidate Subsystems
• Model & Simulate Subsystems to verify behavior
• Integrate candidate Subsystems into Architectures
• Simulate performance of Architectures & DataFlow
• Perform trade studies to select preferred Architecture

System
Requirements

To Design
Review

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 6 of 23

UML and SysML have been emphasized4 5 as tools-of-choice to implement MBSE, but they must be integrated
with design-automation tools such as Simulink that provide means of performing dynamic simulations of integrated
system hardware and software in order to provide a basis for evaluating functional allocations and designs. This is
a result of the fact that most SDL tools were developed to focus only on the definition-side of Systems Engineering
and therefore avoid addressing the remainder of systems engineering represented by the right-hand side of the ETE
systems engineering V-chart (see Figure 1).

UML evolved from approaches to software design developed by Grady Booch, Ivar Jacobson and James
Rumbaugh at Rational Software in 1994–96. Construction and specification of UML and SysML diagrams and charts
are automated in IBM’s Rhapsody product as well as COTS products from other companies wherein users can create
all of the diagrams and charts specified by the UML and SysML standards using drag/drop and point/click actions.
The UML and SysML features of Rhapsody and the several other COTS software packages that implement these
standards do not provide indigenous means of simulating behavior of dynamic systems; however, the frameworks
provided allow users to write and insert code segments into the user-defined architecture elements represented in
their UML/SysML diagrams, and most of the COTS tools provide means of generating code for arbitrary architectures
that embed the user-defined code segments. If UML/SysML diagrams are used to specify the behavior of system
hardware elements whose state derivatives depend upon time and parameters, then such time-dependence must
be represented via discrete integration. Since this can be time-consuming and subject to user errors, UML/SysML
models are seldom used to prescribe dynamic simulations; in fact, most users of UML/SysML tools rely on external
dynamic simulation frameworks to design coupled hardware/software systems, and then either write or generate
code modules for the software side of the design to insert back into architectures represented in UML/SysML
diagrams and charts. The user can then use the code-generation features of Rhapsody or other COTS tools to
generate code for tasks or complete architectures.

Applying UML and SysML in a Model Based Development Process

Millennium prefers to use UML/SysML tools such as Rhapsody to define software architectures using Structure
Models, Object Models, State Charts, Activity Charts and Sequence Diagrams for coordination across teams, and
simultaneously create “Plant” (system hardware) models in Simulink. Figure 4 depicts the process used to generate
Simulink subsystem architectures from Rhapsody diagrams and charts using a conversion tool we call RhapLink. We
apply XMI-based conversion (using the MDA-sponsored RhapLink tool) to generate Simulink block diagrams that
correspond to the UML/SysML source software diagrams, models and charts. Once the software architecture and
I/O is fully represented in Simulink, we then design the system software within each auto-generated Simulink

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 7 of 23

subsystem to operate the Plant model, using dynamic simulation to verify compliance with requirements. Code
generation from Simulink then provides the basis of hardware/software integration, test and verification.

The evolution of capability in the tool-chains suitable for effective MBSE to their current state occurred over

more than 5 decades, wherein development of computer-aided engineering tools for research in control systems
and simulation was under way in the 1970’s (e.g., MATLAB by Cleve Moler). This led to development and commercial
release of the first visual block-diagram programming tool, MATRIXx/System Build (by Integrated Systems, Inc.), in
the mid-1980’s, followed by Autocode in 1988, Simulink (by The Mathworks) in the mid- 1990’s and Simulink’s
Embedded Coder in 2003. The late 1990’s saw evolution of the maturity and capability of block-diagram
programming coupled with automated code generation into powerful and reliable systems engineering and
development tools that were adopted for complex programs such as ISS (a million lines of Autocode-generated code
onboard embedded in life support, GN&C and experimental subsystems), DC-X, F-18 E/F, F-35 and others.

In summary, we strongly advocate that dynamic simulation is a prerequisite capability for ETE MBSE because
simulation is essential for testing of concepts and designs to evaluate performance in the absence of a physical
realization of the system. If the system has dynamic elements in which behavior is time-dependent, then dynamic
simulation is required. However, we also strongly believe that use-case-adaptive integration of requirements
tracking, configuration management, SDL diagramming, and block-diagram high-level programming tools with code-
generation, middleware, V&V and hardware-specific targeting tools is essential to support the breadth and depth of
ETE MBD of complex systems.

TOOL CHAINS FOR MODEL BASED DEVELOPMENT PROCESS ALTERNATIVES

Accomplishing Model-Based Development using the top-level process defined in Section 2 requires a minimum

set of computer-aided engineering software tools to perform the following minimum set of basic process functions:
• Collect and organize system requirements in a manner that facilitates identification of and traceability to

functions, subsystems and components. Requires use of a spreadsheet or a commercial requirements
management product such as DOORS.

Rhapsody UML/SysML
Diagrams/Charts

• Structure and Object Models
• State and Activity Charts
• Sequence Diagrams
• Target Code Generation

Simulink with Stateflow
• Integrated Block-diagram model of Plant HW and

associated SW Modules
• Design SW subsystem internals using Simulink tools
• Verify via NRT and RT System Simulation

Embedded Coder
• Code Generation from Simulink
• Embedded/Real-Time Applications for

specific target

Simulink Model
Database

Embedded Coder TLC file

1-way model Exchange

.

.

Embedded System Builds

Simulink-Based Plant Model
• Detailed modeling of Hardware

functions
Integrate HW models with

software architecture

• Rhapsody XMI parsed into MATLAB Data Structs
• Automated model construction scripting to populate

Simulink subsystems & create the interface subsystems
• Created buses within interface by invoking BusCreator

model construction blocks

Figure 4: Converting Rhapsody UML/SysML Diagrams & Charts into Simulink Models Using RhapLink

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 8 of 23

• Perform architecture design and modeling of hardware subsystems and software functions of the system
using block-diagram programming software tools such as MATLAB/Simulink with Stateflow, or although
other tools such as SCADE, VISSIM, SAFEPROG, SCICOS, Damos or LabView. This process function is
supported by re-use of legacy block-diagram models (re-parameterized for use in the new block diagram
model the user is developing), as well re-use of legacy C or C++ source code modules.

• Define and implement a process for configuration management, version control and build management.
This is facilitated by selection and application of an automated software tool such as SubVersioN (SVN), Jira,
Visual source safe, Concurrent version system, Rational Clear Case, or one of the dozens of such tools that
are commercially available as open-source. Millennium uses SVN for most internal work, but adopts
whatever the customer may prefer.

• Select an automated source-code generation software tool that is compatible with the block-diagram
modeling tools selected above and generates source code in the required or desired language. Simulink
with Embedded Coder is Millennium’s preference, although several other tools are available including ones
that generate code from Simulink. Most code generators (coders) for embedded real-time software are
designed to generate C code, but code generation templates are generally available to apply the changes
required to convert it into C++. ADA language code generators are available for Simulink and SCADE.

• Select or define a target processor board based upon allocated performance, memory and I/O
requirements, and also select or create an Integrated Development Environment that supports the target
processor with compiler, linker/loader, onboard debugger, profiler, board-support package and real-time
operating system.

Figure 5 depicts what we consider to be a minimum of eight entities that must be integrated as seamlessly as
possible (given budget and tool availability and feature sets) to support ETE MBD by providing an entry-level
automated “menu-selection-driven” software development and targeting system. This class of software
development systems is suitable for small projects wherein only 2 or 3 engineers are involved in systems engineering,
design and implementation. In this case, most of the engineering effort is expended in use of the block diagram
programming (MATLAB/Simulink) tool-chain component to define functional behavior flowed down from
requirements, allocate functional models to subsystems to define architectures including I/O, and simulate system
performance to assess compliance with requirements. This follows our basic rule of modeling for MBSE: “If a system
contains dynamic (time-dependent) elements, then dynamic simulation is required to represent its behavior”.
Another significant part of the small-project effort must be devoted to tailoring the code-generation process to
target elements of the Real Time Operating System (RTOS) portion of the Integrated Development Environment so
as to provide a rapid, seamless path from block-diagram models to embedded code running on the selected target
processor. This has to be accomplished one time at the outset of code-generation activities, and then religiously
maintained and updated as needed over the life-cycle of the system.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 9 of 23

Figure 5: Model Based Software Development Environment for Small Teams

For larger, more complex systems that require a team of (about) 4-5 or significantly more engineers to

accomplish systems engineering, design and implementation, it is often desirable to incorporate Middleware (such
as Core Flight System (CFS) with Core Flight Executive (cFE) now available as open source by NASA Godddard
Spaceflight Center) to provide a more loosely-coupled software system that greatly reduces development,
integration and testing complexity for large systems with contributions from multiple developers, agencies and/or
companies.

Also, the requirements definition and flow-down, architecture definition, analysis and concept definition phases
of programs that are applying a team of engineers to develop a complex system can become chaotic unless task-
specific standards are rigorously applied to coordinate and communicate hardware and software architecture across
the team. Such a standard is available from the Object Management Group (OMG) which specifies a UML for visual
specification, visualization, and documentation for models of software systems. In addition, the International Council
on Systems Engineering (INCOSE), in collaboration with the OMG, has created general purpose visual modeling
language for systems engineering applications (SysML). Private companies have developed software-based
automation tools that facilitate creation of the several diagram and chart types specified by the UML and SysML
standards, which range from passive architecture and activity diagrams to executable statecharts.

To seamlessly integrate middleware as well as UML/SysML functional and data specifications into an MBD
environment, data translation software entities are required so that:

1. Architectures and statecharts defined in a commercial UML/SysML product such as Rhapsody can be

seamlessly and accurately transferred into a simulation-capable block-diagram-programming product
such as Simulink, as discussed in Section 2 (see Figure 4). To provide this capability, the Missile Defense
Agency sponsored Millennium’s development of RhapLink -- a Rhapsody-to-Simulink translator -- that
uses Rhapsody diagrams and charts represented in its internally-generated UML-compliant metadata
exchange (XMI) files to generate Simulink models composed of Simulink Subsystem Blocks, buses and
single-element data connections.

Requirements
& Traceability

Selected
Models

C, C++,
Code Modules

Generated
Code

Requirements
Database

Verification
Matrix

Block-diagram modeling
of HW & SW functions
• E.g. Simulink & StateFlow
• NRT System Simulation

Embedded Code Generation
e.g. Simulink Embedded Coder

Embedded
Target Processors

• RT Plant Simulator for PIL/HIL
• Flight Processor

Spreadsheet
• Manage Requirements

• Trace/Verify Requirements

User’s Block Diag Mdl Library
• E.g. library of Simulink component models
• Environment, Component & Algorithm Block

Diagrams

RTOS Integrated Devlmnt Environment
• Runtime environment
• Cross-Compiler
• BSP & IPC software

CM/VC
• E.g. SubVersion (SVN)
• Config/Version Mgmnt
• Build Management

Load
Module

Generated RT
Source Code
& Make Files

Test
Vectors

Legacy Source Code
• C, C++ Source Code

Back-propagate changes

Simulink
Model
Files

Test
Results

Data

Code Gen
Scripts

Model
Files

Test
Vectors

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 10 of 23

2. Code can be generated as middleware “tasks” that seamlessly integrate into middleware products
such as Core Flight System. The software “glue code” to accomplish this was developed cooperatively
by NASA Ames Research Center (with Millennium’s support) and The Mathworks, Inc., makers of
Matlab.

The tool chain depicted in 6 reveals an MBD environment for complex systems being developed by moderate-
to-large teams of engineers. It illustrates seamless integration of Requirements Management and UML/SysML
diagrams and charts as well as generation of CFS tasks from Simulink, and also shows integration of Physical models
to capture component-specific behavior (e.g. multibody dynamics and/or servoelastic behavior.

Figure 6: Model Based Software Development Environment for Large Teams Developing Complex Systems
A component of the tool-chain has been added to represent “External Simulation Frameworks”, wherein

simulations may be automatically exported via code generation to larger-scale simulation frameworks such as
discrete-event frameworks used to simulate wargames. The Target Language Compiler (TLC) capability of Simulink
Embedded Coder enables automated parsing of generated C-code to insert directives and adaptively instantiate new
context-dependent operations, thereby enabling users to develop custom model-exchange tools. This level of
integration was achieved by exploiting the open data-interchange features of the specific products such as is
depicted in Figure 4.

BLOCK-DIAGRAM PROGRAMMING AND SIMULATION OF HARDWARE AND SOFTWARE MODELS

Graphical models are used throughout the engineering disciplines: mechanical engineers create computer-aided
design (CAD) models, electrical engineers produce circuit diagrams, software engineers create flow charts, and
controls engineers draw block diagrams to represent their respective systems. This section is focused on use of block-
diagram programming to create models of subsystem hardware and embedded software models. Simulation is
applied at the functional unit and subsystem levels to verify that design intent and requirements are satisfied, and
the subsystem models are ultimately tested and reconciled against actual subsystem test data. The subsystem

Requirements
& Traceability

UML
Diags

Simulink
Library
Models

C++,
Models

Generated
CFS Tasks

Requirements
Database

Test
Results

DB

Simulink & StateFlow
• Block-diagram modeling of HW &

SW functions
• NRT System Simulation

Embedded Coder

Embedded
Target Processors

• RT Plant Simulator for PIL/HIL
• Flight Processor

External Simulation
Frameworks (e.g. Wargame)

DOORS
• Manage Requirements

• Trace/Verify Requirements

User’s Simulink Model Lib
• Environment, Component & Algorithm

Block Diagrams

RTOS Integ Dev Environ
• Runtime environment
• Compiler
• BSP & IPC software

SubVersioN
• Config Mgmnt
• Version Control
• Build Management

Load
Module

Standalone Model
Builds

RT Source Code
& Make Files

Test
Vectors

External Code

Middleware (e.g. CFS, DDS)

Legacy Source Code & Models
• C++ Source Code, Simulink Blk Diags

Rhapsody UML Diags
• Structure/Object Diagrams
• State Charts& SysML Diagrams
• Sequence Diagrams

Back-propagate changes

Rhapsody-to-Simulink 2-way Translator

Requirements
& Traceability

Simulink
Model
Files

DOORS to SimulinkRhapsody to Simulink

Test
Results

UML Diags
Database

Physical Models
• Derived from FE MultiPhysics Model

simulation results (e.g. flex modes)
• Capture component-specific behavior

Code Gen
TLC files

Test
Results

Generated
Tasks

Loosely
Coupled
System

Model & Code
Verification
Tools

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 11 of 23

models are frequently tested in integrated form to accomplish testing and evaluation of system performance to
assess compliance with system requirements.

One advantage of MBD is that control system engineers are able to rapidly prototype algorithms in their natural
design environment with tools such as Simulink and software engineers can directly auto-code the models. This
minimizes the likelihood for communication errors between algorithm designers and software developers. The
model-based methodology also enhances early prototyping of requirements, enables validation and verification
during early stages of development and provides a common platform for communication between subsystems,
software engineers and stakeholders.

Figure 7 shows a generalized control system diagram which consists of five main components: a controller,
actuators, system, sensors, and an estimator. As shown in Figure 7, a desired state and estimated state are combined
to form the state error which is input into the controller. The controller manipulates the signal and sends a command
message to a system (also known as plant) model. The system model represents the system being controlled such
as a spacecraft or rocket and contains dynamic models of the system’s actuators and sensors. The measured state
of the plant is fed to the estimator which combines all measurements into a new estimated state.

Figure 7: Generic Control System Block Diagram

Example Modeling

Models of the plant are created by creating a mathematical model of the system dynamics and then
implementing that model into a block diagram. As an alternative to deriving the mathematical equations, engineers
can also create a model represented in the physical domain using Simulink add-on toolbox Simscape. The process is
best demonstrated through an example.

Mechanical system are often model as analogous mass-spring-damper systems. For example fuel slosh in a
rocket or the suspension of planetary rover.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 12 of 23

Figure 8: Example of Mass-Spring-Damper System Modeling

The mathematical equations for such mass-spring-damper system can be derived and then implemented in a
block diagram or physical representation can be represented in Simscape.

Figure 9: Modeling Using Simulink and Simscape

The two systems from Figure 9 represented in Simulink and Simscape are identical and can be simulated within
the Simulink environment. Simscape provides the advantage of a schematic that is much easier to identify system
relationships. Pure Simulink blocks have an advantage in simulation speed over Simscape blocks.

Importing Models from CAD Software

An additional method of creating plant models in the physical domain is the use of SimMechanics (an add-on to
Simscape). SimMechanics allows the user to import an assembly model from CAD software such as SolidWorks
directly into Simulink. The model import maintains the physical attributes of individual components (e.g., mass,

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 13 of 23

inertia) as well as the constraints between components (e.g., revolute, translational joints). As an example, Figure
10 shows a robotic manipulator CAD model developed in SolidWorks that was imported into Simulink via the
SimMechanics link. A controls engineer then instantly has a plant model for use in simulation and design for the
manipulator controller.

Figure 10: Importing CAD models into SimMechanics.

Case Studies
LADEE Spacecraft

As was established in previous sections, modeling and simulation constitutes the principal activity of Model
Based Systems Engineering, and the application examples shown in this section are based upon the development of
the Lunar Atmosphere and Dust Environment Experiment (LADEE) spacecraft and its simulator. Development of the
LADEE flight software utilized a MBD approach that integrated auto-generated code, minimal hand-code (e.g. for
communications drivers), Government-off-the-shelf (GOTS) middleware and Commercial-off-the-shelf (COTS)
computer-aided engineering software packages11. Most of the on-board flight software as well the simulation
representing the spacecraft physical subsystems and software is modeled using MATLAB/Simulink from The
Mathworks, Inc, wherein test systems are generated from the plant model and concurrently flight software is
generated from the command and control simulation models, wherein the system simulation is the single source of
generated code.

The model based-methodology enables prototyping and testing of functional/algorithm sequences that directly
address requirements in support of functional analysis and allocation to subsystems, providing an unprecedented
level of confidence in the evolving design iterations. It enables validation and verification during early stages of
development and provides a common platform for communication between subsystems, software engineers and
stakeholders12. A key advantage of this process is the common usage of the graphically-programmed models to
accomplish multiple purposes. For example, LADEE control system engineers were able to rapidly prototype
algorithms and then simulate and verify them in the MATLAB/Simulink design environment followed by handoff of
the verified models to software engineers who would then directly generate code from the models. This minimizes
communication errors between algorithm designers and software developers.

The process depicted in Figure 12 was applied to develop subsystem models that were then integrated to form
the LADEE System Simulation, which is comprised of the Spacecraft simulation with its embedded software, and the
Ground Control Station “simulation” with its embedded software. These two simulation entities were initially
constructed in MATLAB/Simulink and code generation was used to create Processor-In-Loop and Hardware-In-Loop
test-simulation entities.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 14 of 23

Figure 11: LADEE spacecraft functions and subsystem components.

Figure 12: Model-Base Development Process on LADEE

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 15 of 23

Low Cost Space Launch Vehicle

In order to provide affordable acces to space for small spacecraft, NASA and the DoD investigated the use of a
common and modular avionics platform to provide Guidance Navigations and Control (GNC) to several proposed
low cost space launch vehicles. Model Based Design was used to carry out trade studies on the use of lower cost
sensors GNC. High fidelity models of the prosed Inertial Measurement Unit (IMU) and GPS sensors along with
environment models (NASA’s GRAM wind model) and an Extended Kalman Filter were simulated with Monte Carlo
runs to characterize the dispersion envelope of the proposed design.

Figure 13: Low cost launch vehicle simulation and trade studies.

Telerobotic Remote Servicing

Model Based Design was also successfully demonstrated in the area of spacecraft robotics. In order to remotely
control and service existing satellites a concept of a tele-operated robotic manipulator with haptic feedback and
latency compensation was design. The model based solution utilized a feature in Simulink called S-Functions to
import legacy C/C++ code to model the inverse kinematics and scene generation of the manipulator. The concept
was integrated and proven on the Naval Research Laboratory Robot Arm.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 16 of 23

Figure 14: Telerobotic Manipulator modeled and demonstrated.

SIMULATION AND SOFTWARE MODEL TESTING

In general the later in the development process a software bug is found the more expensive it is to fix. For this

reason, an early emphasis should be placed on the simulation unit test suite infrastructure with an eye toward
permanently capturing the unit test effort as a regression test suite. In parallel to the unit testing, individual
components should be combined into an integrated system model to simulate and test the high level system
requirements. Requirements defined in external source (DOORS, SysML, spread sheets) can be directly link in the
model test suite to create requirements traceability. The traceability links can be used to validate all requirements
have a test case and identify missing or untested requirements. The requirement link in the model also gets inserted
as a comment in the generated code. In order to prove complete coverage of defined requirements Formal Methods
tools can be used to identify modeling errors and automatically generate test vectors to reproduce requirement
violations in simulation. Lastly static code analyzers can be used on the generated C code to prove the absence of

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 17 of 23

run-time errors before being deployed to hardware. The MBD testing process can be summarized in Figure 15

Figure 15: Model Based testing steps.

Spacecraft Example

The development effort for the NASA LADEE spacecraft separated testing into two different types: unit tests
and system integration tests. Low level requirements were tested at the unit level because it is usually hard to test
and debug internal modes and interfaces at a system level. Higher level requirements were tested with an integrated
model because it is impossible to test system integration issues at a unit level.

Testing on the LADEE program was enhanced by the modular and layered system architecture. To maintain
bidirectional traceability between code/models, requirements, design and test artifacts a system of naming
conventions was enforced. For example, for the modeling environment, pertinent naming conventions are:

• {name}_lib.mdl: Simulink Model library
• {name}_hrn.mdl: Simulink test harness
• {name}_test.m: Test script associated with model library.

Where the {name} included a unique identifier for that model library for cross- referencing with requirements
and other external documents. Each developer was responsible for providing all the necessary artifacts and
developing the unit test suite associated with their model libraries. By adhering to the naming conventions, higher-
level regression test suites could interrogate the LADEE model and generate a report of test artifacts. This report
was used to exercise the entire test suite under development and evaluate the progress on verifying requirements.
Simulink Report Generator was used as a platform to both drive the test suites and capture the resulting information
in a manner that provided bi-directional traceability between low-level requirements, models, test suites and
metrics.

This test suite also exercises the unit tests on simulator side of the LADEE model. Assumptions are documented
as well as ranges of acceptable operation for the model. Depending on the type of model, refinement studies,
sensitivity analyses, comparison with analysis, or subsystem performance specifications are included.

The unit test suites are used as early indicators that pertinent requirements are being met, but they do not test
the integrated functionality of the system and its software. That is done in a Processor- or Hardware-In-The-Loop

Formal Methods Products

Create Inputs and
Expected Output

Static Analyzer on C Code

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 18 of 23

(PIL/HIL) test environment using scenario-based testing. A spacecraft concept of operations was developed that
looked at each phase of the life cycle and scenarios were developed to test anticipated operations and occurrence
of faults. These scenarios included separation and activation, science operations, orbital maneuvering and fault
management related scenarios.

Once the scenarios have been executed, a custom Simulink report generator script is used to post process the
data and capture the output. The script first reads external imported data, such as requirements spreadsheets and
Interface Control Documents. It then processes each of the data files to extract needed variables for the test suite10.

AUTOMATED CODE GENERATION AND COMPILATION

This section of the paper addresses automated code generation from Simulink models, targeted to

publish/subscribe middleware and Real-Time Operating System (RTOS)/processor combinations.
Although some code can be generated by UML/SysML tools, the focus is on coding interfaces (.h files) and state

machines (conditional or switch statements). Coding for real-time embedded control systems (the primary focus of
Millennium’s Model Based Development Center, MBDC) is best done using a graphical programming language, such
as Simulink or SystemBuild using an associated code generator. Wherein functional block selections invoke the
complex underlying code required for closed loop dynamic simulation, and the code can be automatically parsed
and altered to optimize it for fast execution and small memory footprint. To take advantage of the broad acceptance
and usage of UML/SysML compliant COTS software tools, the MBDC has developed tools for directly importing
UML/SysML interface definitions into a Simulink Model on the front end of a project wherein functional allocations
and architectures have been implemented in UML or SysML for distribution across teams. Graphical programming
languages have been used to create GNC and command/control code for several space flight and launch vehicles
such as MSTI, DC-X, XSS10 and XSS11, and for many manned aircraft such as F-18 E/F, F-16 block D, F-35 and all
aircraft developed by Airbus Industries. Recently, Simulink was used to code Guidance Navigation and Control (GNC),
Electrical Power and Thermal Controllers for the LADEE Spacecraft, which was then integrated with C&DH and device
driver code via the Core Flight System publish/subscribe middleware.

Code generated from the graphical model can be targeted to a specific Processor (eg. PowerPC, ARM, LEON),
Operating System (eg. vxWorks, Linux, RTEMS) or a Publish/Subscribe Middleware layer (eg. CFS, DDS, Simitar
discrete-event simulator). Targeting a Middleware gives the most portability, but has the most overhead. Targeting
is accomplished by configuring a set of code-generation parameters in Simulink’s Embedded Coder and a Template
Language Compiler (TLC) file. Different coding languages have been generated in the past (such as ADA generated
from SystemBuild using AutoCode for the MSTI spacecraft, or ADAcore’s Qgen or SCADE’s ADA code generator).
However, currently, C and C++ code generation has the most support in terms of user base and technical support.

Automatically generated code can be less efficient, in either size or execution, than optimized hand-written
code, but some code generators incorporate their own optimization features so as to generate code that approaches
the “best” handwritten examples. Faster processors available starting in the early 1990’s made code-generation
targeted directly to the processor possible for missions such as that of the MSTI spacecraft. As higher power rad-
hard processors, such as the Rad750, became available in the late 1990’s, targeting to an Operating System became
feasible. The LADEE mission targeted generated code to the Core Flight System (CFS) Publish/Subscribe Framework
Middleware developed by Goddard Space Flight Center (now open-source), and CFS ran on top of the VxWorks real-
time OS running on a RAD750.

All of the subsystems in a Graphical Model can be targeted to one monolithic function that is integrated with
the rest of the system (device interfaces, command/telemetry functions), or separate subsystems can be targeted
to separate tasks or threads that communicate with each other through some means such as shared memory, or an
RTOS message queue or messages over a Pub/Sub middleware. Generating code from separate Simulink subsystems
as CFS tasks allows the possibility of running them at different rates as well as managing updates to them separately.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 19 of 23

LADEE targeted selected Simulink Top-Level Atomic Subsystems to be generated as loosely coupled CFS Applications.
The interfaces (including rate-transitions) were coded via the code-generation TLC template as interactions with the
CFS Pub/Sub Middleware. Simulink Inports were code-generated as CFS messages that were subscribed to. Simulink
Outports were auto-coded as messages that were published. Scheduling of execution was accomplished via message
reception from hardware that propagated messages through the system. The steps required to generate code from
Simulink targeted to the Core Flight Executive (cFE) components of CFS are listed in Figure 16.

Figure 16: Generated code targeted to cFS/cFE middleware.

For the LADEE Processor in the Loop (PIL) testing, Flight Software Subsystems were targeted to a flight-

representative processor and Simulation derived from the Workstation simulation described in section 4, consisting
of sensors, actuators and dynamics subsystems targeted to CFE and a simulation processor. Data between the FSW
and Sim processors was transported in various levels of fidelity as shown in Figure 17. Note that the exact same
Simulink Models were code-generated into an evolving mixture of hardware configurations13.

Simulink Model

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 20 of 23

Figure 17: Processor In the Loop archetecture.

Another project developing space interceptor real-time HIL simulations for MDA has targeted Simulink models

to the C++ interface of the SIMITAR discrete-event simulation framework. Changing the target of the control portion
of the models from SIMITAR to cFE has been discussed. This can be accomplished with little or no changes to the
Graphical Models. The Graphical Programming language provides the ultimate portability, since it does not rely on
any particular target processor, language, Operating System or Middleware.

The other aspect of code generation is a mechanism that can create interface related code from a single data
source in order to avoid errors caused by redundant data sources that need to be manually kept in sync. A simple
example of an interface that lends itself to this mechanism is the Space-to-Ground interface between a vehicle and
a remote ground system. Interfaces between on-board software modules also benefit from automatic interface
generation. The single data source can be implemented in spreadsheets, a UML/SysMl model or a Relational
Database Management System (RDBMS). The cleanest approach is an RDBMS with a clean schema that holds all
interface related information along with tools that extract information from the RDBMS to generate documentation
and code.

VALIDATING SIMULATION MODELS FROM TEST DATA

Since the MBD process creates a system design that reflects the behavior and fidelity of its underlying

simulation, realization of the design as hardware and embedded software must also be tested in “real world”
environments. In addition to verifying subsystem performance and providing a basis for accepting delivery of
subsystems, data from subsystem hardware tests must be applied to support evolution of simulation fidelity as well
as embedded software robustness and reliability. In MBD, testing is accomplished via simulations and PIL/HIL test
systems initially, and then augmented by hardware testing to obtain excitation-driven data that enhances simulation
model fidelity and prediction accuracy.

Sensors & Actuators

Sensors, actuators and other devices can be initially modelled in a Graphical Programming language 3 or 6 DOF
dynamics simulation and specifications provided from the device manufacturer. A manufacture, such as Blue Canyon
Technologies, may even provide a Matlab model of the device. These models can be used in closed loop simulations
to develop initial control algorithms. As early as possible, when actual devices are acquired, they can be
characterized in a suite of isolated real-life tests. The results of these characterizations can be then integrated back
into the Graphical simulation. The Control Algorithms can then be modified as needed to match the higher fidelity

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 21 of 23

simulation of the sensors and actuators. This lowers the risk of encountering discrepancies when the actual devices
are integrated into the system.

Complete systems

In some systems, such as a launch vehicle, test flights of sensors and actuators are used to characterize the
sensors and actuators. If state estimation software, such as a Kalman Filter, is required to derive the most accurate
state from a suite of sensors, some of which are expected to provide inconsistent results, the state estimation
software may also needed to be characterized in an integrated test, such as a test flight. The NASA AVA program is
proceeding in such a manner in its efforts to develop a more affordable avionics package that can be provided to
small companies trying to develop game-breaking rocket technologies.

DEPLOYMENT AND OPERATION

One of the advantages of creating an integrated systems model, is the creation of a system simulator that can
be used in the operational environment. In terms of spacecraft, the same system model that was created to develop
and test the flight software can be use by the operations team to

1. Development and testing of spacecraft command scripts using Hardware-in-the-Loop (HIL) simulators
before and during the mission

2. Operator training during mission simulations and readiness testing using the HIL simulator before the
start of the mission

3. Verification of all tactical command sequence files uploaded using WSIM and PIL simulators

As an example, the model-based systems simulator developed by the LADEE flight software team was used
before and during the operational phase of the mission. In order to train console operators a series of Simulations
and Operational Readiness Testing (ORT) scenarios utilized the HIL simulator in or to provide a flight like training
environment. The ORTs were conducted in real-time with operators on console 24 hours a day for 3-5 days
depending on the mission phase being simulated.

A feature of simulator that was critical for operator training was the ability to inject faults into the system.
During the flight software development the ability to inject faults was created to ensure the software satisfied
requirements on fault tolerance. The mission operations test conductor was able to inject faults using the same
feature in order to test console operators response faults. The test conductor has the ability to initialize the start of
the simulation with faults (example: scale factor on thrust out of main axial thruster) or inject faults while the
simulation is running (example: over-current temperature sensor failure).

The LADEE spacecraft simulator proved to be especially valuable during operations when debugging unexpected
behavior of the star-tracker as shown in Figure 18. The guidance, navigation and control (GN&C) state estimator
started showing performance errors shortly after activation, which triggered the on-board fault management to
command the spacecraft into Safe Mode. The performance errors were the result of delayed reporting from the star
tracker when a bright object (such as the Moon) entered the star tracker’s field of view. The GN&C team was able
to mimic the flight behavior of the star tracker using the simulator, develop and verify a patch for the on-board flight
software, and enable the mission to successfully continue.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 22 of 23

Figure 18: Using model based simulator to debug and fix flight anomaly.

SUMMARY

Model Based Systems Engineering (MBSE) and Model Based Development (MBD) are shown to be synomomous

in describing simulation-driven, simulation-centric approach to defining, designing, implementing and deploying
systems, wherein the Systems Engineering Process defined by DoD acquisition requirements is defined to encompass
the entire End-To-End system acquisition cycle. This means that Systems Engineering encompasses engineering
design, system realization and deployment into operation. Candidate suites of computer-aided design tools were
presented that enable rapid, efficient and robust practice of systems engineering discipline across the entire end-
to-end systems engineering cycle, and examples of their application to support development, deployment and
operation of systems were presented. Details of block-diagram programming and code generation for system
simulations and embedded software were presented. The ability to apply an evolving high-fidelity simulation model
across all aspects of systems engineering, from requirements analysis to deployment and operation, is demonstrated
and discussed. Deployment and use of the methods presented herein to develop complex systems can result in
substantial enhancements in system robustness and reliability, ultimately increasing mission assurance and
satisfying customer needs at reduced life cycle cost. The systems robustness benefits follow from the extensive
simulatioin-driven testing enabled by a Model-Based approach across all aspects systems engineering from
functional analysis through testing of physical systems

1 M. Whalen, D. Cofer, S. Miller, B. H. Krogh and W. Storm, "Integration of Formal Analysis into Model-Based
Development Process," in Proceedings of the 12th International Conference on Formal Methods for Industrial Critical
Systems., Berlin, 2008.

2 M. Broy, S. Kirstan, H. Krcmar and S. Bernhard, "What is the Benefit of a Model-Based Design of Embedded
Software Systems in the Car Industry?," 2012.

32st Space Symposium, Technical Track, Colorado Springs, Colorado, United States of America
Presented on April 11-12, 2016

 Page 23 of 23

3 M. Ahmadian, Z. Nazari, N. Nakhaee and Z. Kostic, "Model Based Design and SDR (Software Defined Radio),"

London, 2005.
4 S. J. Toper and N. C. Horner, "Model-Based Systems Engineering in Support of Complex Systems Development,"

vol. 32, no. 1, 2013.
5 M. Eigner, C. Muggeo, T. Dickopf and K. G. Faibt, "An approach for a Model Based Development Process of

Cybertronic Systems," 2014.
6 "Defense Acquisition Guidebook. Chapter 4 - Systems Engineering," [Online]. Available:

https://dag.dau.mil/Pages/Default.aspx.
7 “Systems Engineering Fundamentals”, Supplementary text prepared by the Defense Acquisition University

Press, Ft. Belvoir, VA 22060-5565, Dated Jan 1, 2001
8 http://www.incose.org/AboutSE/WhatIsSE
9 L. von Bertalanffy, General System Theory: Foundations, Development, Applications, New York: Braziller, 1968.
10 K. Boulding, "General Systems Theory - Skeleton of Science," vol. 2, no. 3, 1956.
11 N. Benz, D. Viazzo and K. Gundy-Burlet, "Multi-purpose Spacecraft Simulator for LADEE," Big Sky, 2015.
12 K. Gundy-Burlet, "Validation and Verification of LADEE Models and Software," Pasadena, 2014.
13 D. Forman, C. Pires and S. Christa, "Mix'n'Match Device I/O Transports for Evolving Closed-Loop FSW Testbed

Fidelity," 2011.

