

2018 Space Symposium Wavefront Sensing and Controls for the James Webb Space Telescope

Scott Acton

Ball Aerospace

Bruce Dean, Lee Feinberg

NASA Goddard Space Flight Center

Marshall Perrin, Charles Lajoie, Matthew Lallo

Space Telescope Science Institute

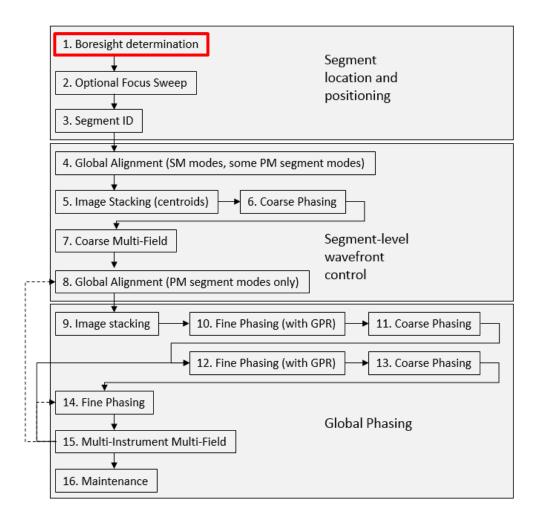
4/11/18

Introduction

James Webb Space Telescope (JWST) is unique in that it is

- Large (6.5 meters)
- Space-based
- Segmented
- Deployable
- Cryogenic
- High authority

The telescope must be aligned in space


- Rely on existing science instruments (no wavefront sensor)
- Special optical elements are placed in 8 of NIRCam's 48 filter wheel positions for WFSC
- Images are taken and downloaded for analysis on the ground (no on-board image processing)

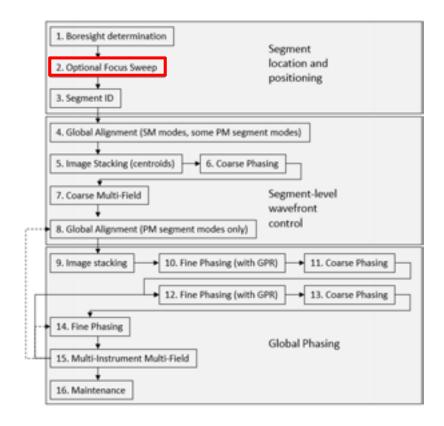
• The primary mirror consists of 18 segments

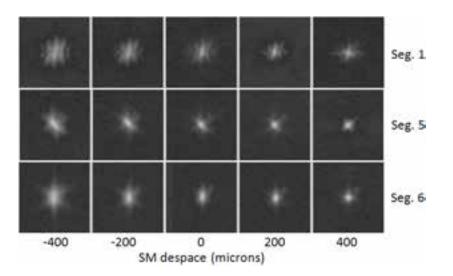
- Hexapod allows for adjustment is 6 DOF
- A 7th ROC actuator allows the ROC to be changed
- The secondary mirror is also on a hexapod

The WFSC Process

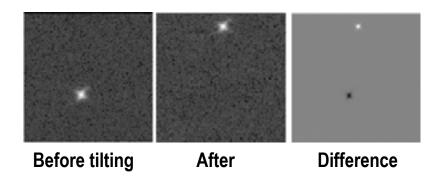
We will touch on each of these processes briefly

Image Mosaic and Boresight determination




- Telescope is slewed to a bright isolated star.
- ~200 NIRCam images are combined to make a large image mosaic.

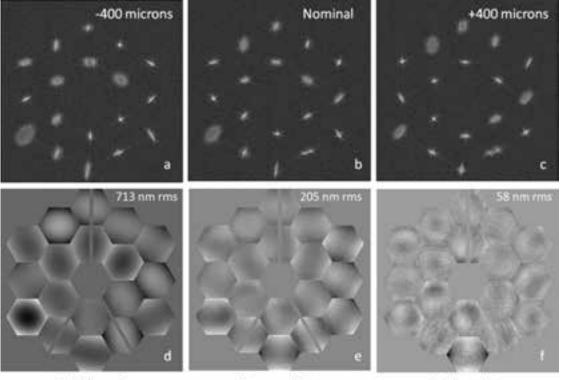
Focus Sweep


- SM is scanned in piston to step through image focus
- Phase Retrieval calculates focus error
- SM is placed at best focus, while guarantee that at least one spot is focused enough to allow guiding

Segment ID

- A series of telescope pointings are planned to cover the entire mosaic
- At each pointing, each segment is tilted slightly so its spot will move
- Images are taken before and after tilting. If the image moves, we know which segment it is associated with.

Global Alignment



1. Boresight determination 2. Optional Focus Sweep 3. Segment ID	Segment location and positioning
Global Alignment (SM modes, some PM se S. Image Stacking (centroids) G. Coarse	e Phasing
7. Coarse Multi-Field 8. Global Alignment (PM segment modes only	Segment-level wavefront control
9. Image stacking 10. Fine Phasing (v 12. Fine Phasing (v	
14. Fine Phasing 15. Multi-Instrument Multi-Field 16. Maintenance	Global Phasing

- Spots are moved into a hexagonal array
- SM is moved in piston to create defocused images
- PMSA tilts are also applied to maintain array
- Phase Retrieval yields wavefront over each segment
- Global Alignment is performed twice First application controls
 - SM position
 - PMSA piston
 - PMSA clocking
- Second use of Global Alignment controls
 - PMSA clocking
 - PMSA translation
 - PMSA ROC

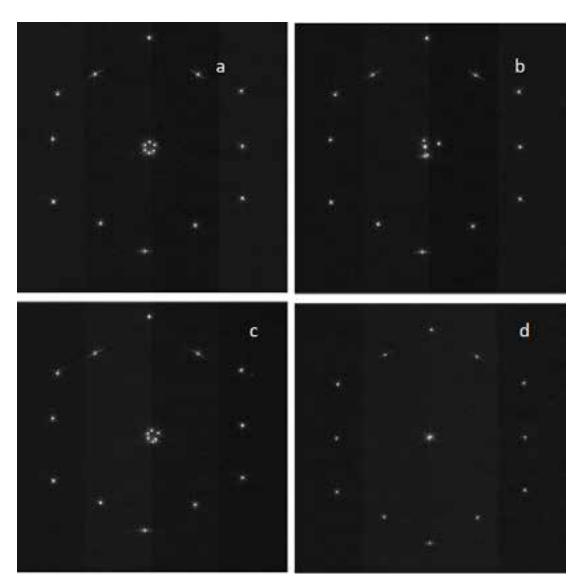
Global Alignment

Image array

Resultant wavefront

Initial result

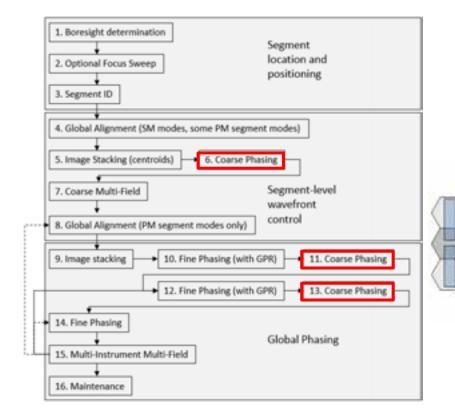
Intermediate


Final result

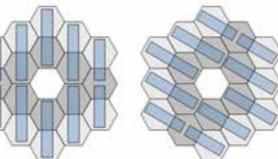
1. Boresight determination 2. Optional Focus Sweep 3. Segment ID	Segment location and positioning	
4. Global Alignment (SM modes, some PM segment modes) 5. Image Stacking (centroids) 6. Coarse Phasing		
7. Coarse Multi-Field 8. Global Alignment (PM segment mo	Segment-level wavefront control	
	asing (with GPR) 11. Coarse Phasing asing (with GPR) 13. Coarse Phasing	
14. Fine Phasing 15. Multi-Instrument Multi-Field 16. Maintenance	Global Phasing	

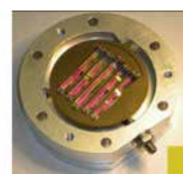
- Image stacking is needed in preparation for coarse phasing (performed 3 times).
- The first stacking is based on centroids
- Subsequent stacking uses a Geometrical Phase Retrieval algorithm (GPR).
- In each case, moves must be made while conserving the fine range of the actuators.
- Guiding must be active during the stacking process

Image Stacking


Stacking based on centroids.

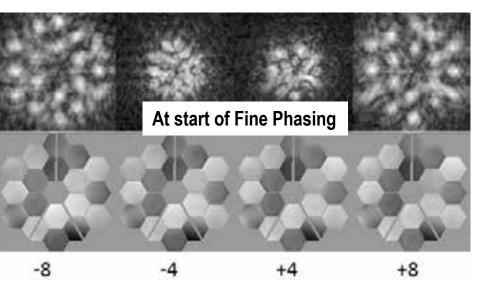
- Guiding is performed on a spot near the perimeter.
- (a) Six spots are moved near the center. Their positions are measured.
- (b) Spots are commanded to center and fine mechanisms are recentered. They are measured and moved back to the small array.
- (c) Their positions are measured.
- (d) The spots are stacked.

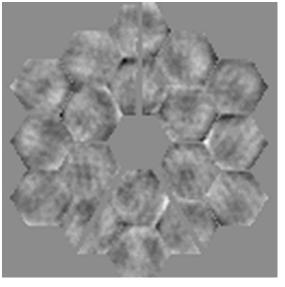

This is repeated for the remaining segments in groups of 6. Guiding is transferred to the stacked segments during the last group.


Coarse Phasing

- Coarse Phasing is performed 3 times.
- Goal is to reduce PMSA piston errors from >200 microns to ~0.3 microns
- Uses Dispersed Fringe Sensing (DFS) technology

Coarse Phasing


Sample spectra -100 um +20 um Full-frame NIRCam Images


Fine Phasing

- Weak lenses are placed in the filter elements of NIRCam to created defocused images
- A Phase Retrieval algorithm is applied to calculate the wavefront
- Corrections are applied to completely phase the telescope, at a single field point

At end of Fine Phasing, 50 nm rms

Multi-instrument Multi-field

1. Boresight determination 2. Optional Focus Sweep 3. Segment ID	Segment location and positioning
4. Global Alignment (SM modes, some PM 5. Image Stacking (centroids) 6. Co	M segment modes)
7. Coarse Multi-Field 8. Global Alignment (PM segment modes	Segment-level wavefront control
9. Image stacking 10. Fine Phasin	
14. Fine Phasing 15. Multi-Instrument Multi-Field	Global Phasing
16. Maintenance	

- Uses the SM to create slightly defocused images a ~ 30 field points on multiple science instruments.
- Phase retrieval algorithm calculates wavefront from these images. This is challenging because...
 - The images are generally broad-band
 - The image are often undersampled
 - On NIRSpec, the micro-shutter array and an internal stop are in the beam path
 - Minimal defocus is used, due to the need to guide during exposures
- Monochromatic, fully-sampled weak lens images (as used in Fine Phasing) generate the fine details in the wavefront.
- The other Phase Retrieval algorithms use this as a starting point.
- A pseudo-linear model is used to generate an optimal solution.